T1R2 and T1R3 subunits are individually unnecessary for normal affective licking responses to Polycose: implications for saccharide taste receptors in mice.

نویسندگان

  • Yada Treesukosol
  • Ginger D Blonde
  • Alan C Spector
چکیده

The T1R2 and T1R3 proteins are expressed in taste receptor cells and form a heterodimer binding with compounds described as sweet by humans. We examined whether Polycose taste might be mediated through this heterodimer by testing T1R2 knockout (KO) and T1R3 KO mice and their wild-type (WT) littermate controls in a series of brief-access taste tests (25-min sessions with 5-s trials). Sucrose, Na-saccharin, and Polycose were each tested for three consecutive sessions with order of presentation varied among subgroups in a Latin-Square manner. Both KO groups displayed blunted licking responses and initiated significantly fewer trials of sucrose and Na-saccharin across a range of concentrations. KO mice tested after Polycose exposure demonstrated some degree of concentration-dependent licking of sucrose, likely attributable to learning related to prior postingestive experience. These results are consistent with prior findings in the literature, implicating the T1R2+3 heterodimer as the principal taste receptor for sweet-tasting ligands, and also provide support for the potential of postingestive experience to influence responding in the KO mice. In contrast, T1R2 KO and T1R3 KO mice displayed concentration-dependent licking responses to Polycose that tracked those of their WT controls and in some cases licked midrange concentrations more; the number of Polycose trials initiated overall did not differ between KO and WT mice. Thus, the T1R2 and T1R3 proteins are individually unnecessary for normal concentration-dependent licking of Polycose to be expressed in a brief-access test. Whether at least one of these T1R protein subunits is necessary for normal Polycose responsiveness remains untested. Alternatively, there may be a novel taste receptor(s) that mediates polysaccharide taste.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orosensory detection of sucrose, maltose, and glucose is severely impaired in mice lacking T1R2 or T1R3, but Polycose sensitivity remains relatively normal.

Evidence in the literature supports the hypothesis that the T1R2+3 heterodimer binds to compounds that humans describe as sweet. Here, we assessed the necessity of the T1R2 and T1R3 subunits in the maintenance of normal taste sensitivity to carbohydrate stimuli. We trained and tested water-restricted T1R2 knockout (KO), T1R3 KO and their wild-type (WT) same-sex littermate controls in a two-resp...

متن کامل

Behavioral evidence for a glucose polymer taste receptor that is independent of the T1R2+3 heterodimer in a mouse model.

Although it is clear that the heterodimer formed by the T1R2 and T1R3 proteins serves as the primary taste receptor for sweeteners, there is growing evidence that responses to glucose polymers may be mediated by a different taste receptor. Here we report that although T1R2 knock-out (KO) and T1R3 KO mice displayed severely impaired responding to glucose, maltose, and maltotriose in an initial s...

متن کامل

T1R3 taste receptor is critical for sucrose but not Polycose taste.

In addition to their well-known preference for sugars, mice and rats avidly consume starch-derived glucose polymers (e.g., Polycose). T1R3 is a component of the mammalian sweet taste receptor that mediates the preference for sugars and artificial sweeteners in mammals. We examined the role of the T1R3 receptor in the ingestive response of mice to Polycose and sucrose. In 60-s two-bottle tests, ...

متن کامل

Sweet Taste Receptor Deficient Mice Have Decreased Adiposity and Increased Bone Mass

Functional expression of sweet taste receptors (T1R2 and T1R3) has been reported in numerous metabolic tissues, including the gut, pancreas, and, more recently, in adipose tissue. It has been suggested that sweet taste receptors in these non-gustatory tissues may play a role in systemic energy balance and metabolism. Smaller adipose depots have been reported in T1R3 knockout mice on a high carb...

متن کامل

An efficient Escherichia coli expression system for the production of a functional N-terminal domain of the T1R3 taste receptor

Sweet taste is mediated by a dimeric receptor composed of two distinct subunits, T1R2 and T1R3, whereas the T1R1/T1R3 receptor is involved in umami taste perception. The T1R1, T1R2, and T1R3 subunits are members of the small family of class C G protein-coupled receptors (GPCRs). The members of this family are characterized by a large N-terminal domain (NTD), which is structurally similar to bac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 296 4  شماره 

صفحات  -

تاریخ انتشار 2009